The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems

نویسندگان

  • Chih-Wen Chang
  • Chein-Shan Liu
  • Jiang-Ren Chang
چکیده

The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems Chih-Wen Chang1, Chein-Shan Liu2 and Jiang-Ren Chang1 Summary By using a quasi-boundary regularization we can formulate a two-point boundary value problem of the backward heat conduction equation. The ill-posed problem is analyzed by using the semi-discretization numerical schemes. Then, the resulting ordinary differential equations in the discretized space are numerically integrated towards the time direction by the Lie-group shooting method to find the unknown initial conditions. The key point is based on the erection of a one-step Lie group element G(T) and the formation of a generalized mid-point Lie group element G(r). Then, by imposing G(T) = G(r) we can seek the missing initial conditions through a minimum discrepancy of the target in terms of the weighting factor r ∈ (0, 1). A numerical example is worked out to persuade that this novel approach has good efficiency and accuracy. keywords: Backward heat conduction problem, Lie-group shooting method, Strongly ill-posed problem, Quasi-boundary regularization, Two-point boundary value problem

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

Quasi-Reversibility Regularization Method for Solving a Backward Heat Conduction Problem

Non-standard backward heat conduction problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. In this paper, we propose a regularization strategy-quasi-reversibility method to analysis the stability of the problem. Meanwhile, we investigate the roles of regularization parameter in this method. Numerical result shows that our algorithm is effe...

متن کامل

A Numerical Method for Backward Inverse Heat Conduction Problem With two Unknown Functions

This paper considers a linear one dimensional inverse heat conduction problem with non constant thermal diffusivity and two unknown terms in a heated bar with unit length. By using the WKB method, the heat flux at the end of boundary and initial temperature will be approximated, numerically. By choosing a suitable parameter in WKB method the ill-posedness of solution will be improved. Finally, ...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007